

Influence of Growth Regulator Treatments on Dry Matter Production, Fruit Abscission, and ¹⁴C-Assimilate Partitioning ⁱⁿ Citrus

Craighton S. Mauk,¹ Michael G. Bausher,² and George Yelenosky²

¹Fruit Crops Department of University of Florida, Gainesville, FL 32611, USA ²U.S. Department of Agriculture, ARS, Horticultural Research Laboratory, Orlando, FL 32803, USA

Received December 9, 1985; accepted May 19, 1986

Abstract. Experiments were performed to monitor (1) uptake and translocation of foliar-applied microdroplets of ¹⁴C hormones and (2) effects of multiple growth regulator sprays on foliar and fruit growth variables and photosynthate partitioning in Valencia orange trees (Citrus sinensis (L.) Osbeck). The uptake of 14C-sucrose, 14C-paclobutrazol (PP333), and 14Cnapthaleneacetic acid (NAA) in 6-month-old greenhouse-grown trees exceeded that of ¹⁴C-abscisic acid (ABA) and ¹⁴C-benzyladenine (BA) 48 h after microdroplet application. ¹⁴C-sucrose transport from the application site was much greater than any other source, especially ¹⁴C-BA. In a second study, 2-year-old Valencia orange trees were maintained under field conditions and were sprayed to foliar runoff (3×/week for 3 weeks) with BA, NAA, ABA, PP333, and gibberellic acid (GA3) at 100 µM during flowering and early fruit set. Select branches were then briefly exposed to ¹⁴CO₂ and harvested 24 h later. Both GA₃ and BA sprays promoted foliar growth. BA also stimulated fruit growth, whereas GA, sharply increased fruit dry weight while fruit number decreased. BA and GA3 enhanced 14C assimilate export by the foliage to the developing fruit, and GA3 was especially active in promoting fruit sink intensity (14C/dry wt). The other compounds (NAA, ABA, PP333) restricted foliar and fruit growth. They also inhibited transport of 14C assimilate from the leaves to the fruit. Results indicate that foliar-applied growth regulators can influence source-sink relations in citrus early in reproductive development by manipulating photoassimilate production and partitioning.

Growth regulators have been exogenously applied to citrus foliage and fruit to reduce premature fruit drop and enhance total yield (Cooper and Henry 1973,

Krezdorn and Cohen 1962). Growth regulators such as 2,4-dichlorophenoxyacetic acid (2,4-D) alone or in combination with gibberellic acid (GA₃), for example, have reduced fruit drop in oranges (Lima and Davies 1984). Floral dips of GA₃ have also been especially promotive in this regard (Brown 1974). Success in general, however, has been limited because of the uncertainty of rate, timing, and frequency of application.

The use of growth regulator sprays is based on the premise that they will be absorbed and act as chemical stimuli in a manner similar to endogenous hormonal pools. The mode of action of externally applied growth regulators and their interaction with the internal factors in citrus have received only slight attention (Bausher and Yelenosky 1986, Monselise and Goren 1978, Wang et al. 1985). More information is needed to link growth regulators with internal physiological processes vital for foliar functioning and reproductive growth.

The reduction of photosynthate production and distribution during the early reproductive period has resulted in abscission and reduced yield (Brun and Betts 1984, Herzog 1982, Mauk and Breen 1986, Pate and Farrington 1981). Assimilate distribution has been studied in citrus (Guy et al. 1981, Koch 1984a,b, Kriedeman 1970), but rarely during the critical period of flowering and fruit set. Early studies involving the exogenous application of kinetin (Kriedemann 1968) and gibberellin, GA₃ (Brown 1974), to citrus fruit showed that these growth regulators enhanced ¹⁴C assimilate exportation by the foliage to developing reproductive structures. Therefore, a study was initiated (1) ¹⁰ examine the uptake and translocation of foliar-applied ¹⁴C growth regulators, and (2) to evaluate further the influence of growth regulator sprays on reproductive organ abscission and photosynthate distribution between the foliage and fruit during flowering and early fruit set in citrus.

Materials and Methods

Foliar Application of ¹⁴C Growth Regulators

Uniformly sized 2.5-month-old, greenhouse-grown Valencia orange trees (Citrus sinensis (L.) Osbeck) budded onto 1-year-old rough lemon rootstock were selected. Each plant consisted of 10-12 fully expanded leaves. The fifth and sixth leaves (numbered acropetally) were positioned abaxially on styro foam boards so that they remained flat, which prevented the droplets of mater rial from running off. Leaves were then briefly cleaned with 70% ethanol to remove any pesticide spray residue. Greenhouse conditions during treatment were 30/21°C day/night with a light intensity of 1700 μ E/m²/sec at the time of application (midmorning). Treatments consisted of benzyl(8-14C)adenine (57 µCi/µmol; Amersham Corp., Arlington Hts, IL, USA), napthaleneacetic (car boxyl-14C) acid (6.6 µCi/µmol; California Bionuclear Corp., Sun Valley, CA. USA), DL-cis-trans-(2-14C) abscisic acid (10 µCi/µmol: Amersham Corp.), paclobutrazol [(2RS,3RS)-1-(4-chloropheny]-4,4-dimethyl-2-1.2.4-(3.5-14C) triazol-1-yl-pentan-3-ol) (3.5 µCi/µmol; Imperial Chemical Industries, Golds' boro, NC, USA), and sucrose (14C-(U)], (673 µCi/µmol; New England NW clear, Boston, MA, USA). Each ¹⁴C solution was adjusted to a final concentration of 40% methanol and pH 6.5. The methanol concentration was chosen on the basis of previous research with foliar sprays in citrus (Krezdorn and Cohen

1962, and unpublished results) in which 40% methanol was used and showed no phytotoxic effect on the foliage and aided in compound penetration through the heavy cuticle characteristic of citrus species. This concentration was also necessary to completely solubilize 100 μ m paclobutrazol and was thus used as the standardized base solution for all treatments. This facilitated comparison between ¹⁴C droplet-uptake experiments and multiple, foliar growth regulator sprays.

Two leaves per plant were utilized with two different treatments applied per leaf. Each treatment was repeated four times. A 20-µl droplet of each ¹⁴C growth regulator (30,000-60,000 disintegrations/min (DPM)) was applied midway between the leaf margin and midrib at the widest portion of the blade. Under the greenhouse conditions, the droplets took approximately 20–25 min to dry. The actual exposure sites (75-mm² disks) were removed at 12, 24, and 48 h after droplet application. The disks were floated upside down in distilled water for 1 h to remove the nonabsorbed ¹⁴C compound, and an aliquot of the Wash was assayed for ¹⁴C activity to determine quantitatively the amount of nonabsorbed ¹⁴C. Each disk was then dried for 24 h at 50°C prior to combustion in a sample oxidizer (Packard Instruments, model 306). ¹⁴C activity per disk was measured in a liquid scintillation counter (LKB Instruments, model ¹²¹⁷) equipped with chemiluminescence correction. This served as a measurement of ¹⁴C activity that was absorbed but not translocated from the application site. The remainder of each leaf (minus the application site) was also combusted to determine the percentage of total applied ¹⁴C activity that was ex-Ported from the exposure area. Quench correction curves were prepared for each tissue type, and all values of ¹⁴C activity were represented in DPM. Previous experiments revealed that there was no significant interchange of ^{14}C between leaves during the 48-h exposure period that could confound results. The entire stem and root systems were also assayed for ¹⁴C activity via the sample combustion method and failed to exhibit any significant activity even on pooling all the sample (500-700 mg) aliquots of dried tissue.

Exogenous Spray Treatments

Foliar spray treatments consisted of benzyladenine (BA), gibberellic acid (GA_3) , abscisic acid (ABA), napthaleneacetic acid (NAA), and paclobutrazol (PP333), each at 100 μ M in 40% methanol and 0.1% Triton X-100. Foliar sprays were applied $3 \times /$ week for 3 weeks to 2-year-old Valencia orange trees originally budded onto Milam rootstock. Abaxial and adaxial surfaces were sprayed until runoff occurred. Trees were grown outdoors in 14-L pots of soil:sand (1:2, v/v) and drip-irrigated. Foliar treatments were applied from flowering through early fruit development to branches selected for uniformity. Dry weight of individual plant parts and abscission data were taken at harvest 3 weeks later.

¹⁴CO₂ Pulsing

After 3 weeks of foliar sprays, four uniform branches from each spray treatment were selected for ${}^{14}CO_2$ exposure. Four branch units were placed in a 14-L airtight Plexiglas assimilation cell equipped with electric fans (for cooling and ¹⁴CO₂ circulation) and modified injection ports for facilitating ¹⁴CO₂ generation. The cell was sealed and ¹⁴CO₂ generated by injection of 1.5 ml 6 N HCl into two vessels, each containing 25 μ Ci of BA ¹⁴CO₃ (55 μ Ci/ μ mol; ICN Radiochemicals, Irvine, CA, USA). After 30 min of exposure to ¹⁴CO₂, the air in the cell was exhausted through a ¹⁴CO₂ trap to remove nonabsorbed ¹⁴CO₂. The cell was then opened and plants were removed. Approximately 24 h later the ¹⁴C-exposed tissue was subdivided by nodes (lower, middle, and upper branch position) into leaves, fruitlets, and stem. Leaf area was measured, and all plant parts were dried at 50°C for 48 h prior to dry weight determination. ¹⁴CO₂ there was no appreciable ¹⁴C (less than 0.5%) found in any tissue below the ¹⁴CO₂⁻ pulsed branch 24 h after exposure.

Results

¹⁴C Hormonal Uptake and Translocation (Microdroplet Application)

Foliar absorption of ¹⁴C-PP333 and ¹⁴C-sucrose was more rapid than any other source 12 h after application (Fig. 1). Their uptake reached a maximum (62–65%) and then remained relatively constant, whereas the absorption of ¹⁴C-NAA and ¹⁴C-ABA continued to increase during the entire exposure period. Absorption of ¹⁴C-BA also increased, but noticeably less than the other treatments.

Transport of ¹⁴C-sucrose from the site of application was much higher than that of the other ¹⁴C compounds, reaching a maximum at 12 h (Fig. 2). Translocation of ¹⁴C-ABA and ¹⁴C-NAA steadily increased throughout the exposure period but was less than that of ¹⁴C-sucrose. ¹⁴C-PP333 transport was fairly constant from 12 to 48 h (10–12%), and ¹⁴C-BA exhibited very little translocation (2–5%).

Spray Treatment Effects

Response of Vegetative Parts

Foliage dry weight was increased 200% and 85% for BA- and NAA-treated branches, respectively, compared to the control (Fig. 3A). Sink intensity ($^{14}C/$ dry wt) of the foliage was not as noticeably influenced by hormonal treatment as the other foliar parameters. Stem dry weight was increased 3.5× that of the control for the GA treatment (Fig. 3B). Stem sink intensity was very similar among treatments except for the marked decline (45%) associated with NAA spray.

Effects on Reproductive Tissue

BA and GA₃ treatments produced nearly $2 \times$ the total fruit dry weight of the control (Fig. 4). GA₃ resulted in a 2.4× increase in ¹⁴C fruit activity (data

Fig. 1. Uptake of ¹⁴C-labeled sources (¹⁴Csucrose, abscisic acid (ABA), napthaleneacetic acid (NAA), benzyladenine (BA), and paclobutrazol (PP333)) from 0 to 48 h after application to fully expanded Valencia orange foliage. The ¹⁴C compounds were applied as 20- μ l droplets in 40% methanol with 0.1% Triton X-100 added as a surfactant. Each data point is the mean \pm SE of four replicates.

Fig. 2. Translocation of ¹⁴C-labeled sources (same designations as Fig. 1) over a 48-h exposure period following their application to fully expanded leaves of Valencia orange. The ¹⁴C compounds were applied as 20- μ l droplets in 40% methanol with 0.1% Triton X-100. Translocation was expressed as the percentage of the total applied ¹⁴C activity that was exported from the original application site (75mm² leaf disk). Each data point is the mean ± SE of four replicates.

^{unpublished}) and a 41% rise in fruitlet sink intensity (Fig. 4). The other growth ^{regulators} (NAA, ABA, PP333) led to a sharp decline in fruit growth and in levels of ¹⁴C found in fruit tissue.

Total number of flowers produced per branch was consistently greater for those treatments that previously inhibited vegetative plant growth and ¹⁴C levels (Table 1). Although PP333 and NAA substantially increased flowering (68% and 59%, respectively), the only treatments that appreciably reduced abscission were BA (52%) and ABA (63%) compared to the control (80%).

Partitioning of ¹⁴C Activity

The foliage of the control contained the largest fraction of ¹⁴C activity (65%) followed by the fruit (24%), and then stem tissue (11%) 24 h after ¹⁴CO₂ exposure (Fig. 5). The ¹⁴C distribution pattern between the control and BA treatment was very similar; however, fruit and stem tissue of the GA₃ treatment had considerably higher values (10 and 9 percentage units, respectively) than the control. A greater percentage of the ¹⁴C resided in the foliage and less in the fruit of the PP333, NAA, and ABA treatments. The fruit of the NAA- and

Fig. 3. Response of Valencia orange foliage (A) and stem (B) dry weight and sink intensity (14C activity/mg dry wt) to foliar-applied growth regulator sprays (100 μ m in 40% methanol with 0.1% Triton X-100). Plants were sprayed 3 ×/week for 3 weeks prior to brief exposure of selected branch units to 14 CO₂ during early fruiting. Data are means ± SE of five replicates.

Fig. 4. Effect of foliar-applied growth regulator sprays (100 μ m in 40% methanol with 0.1% Triton X-100) on Valencia orange fruit dry weight and sink intensity (1⁴C activity/mg dry wt). Plants were sprayed 3×/week for 3 weeks prior to brief exposure of selected branch units to ¹⁴CO₂ during early fruiting. Data are means \pm SE of five replicates.

ABA-treated plants, for example, comprised only 3% and 10%, respectively, 0^f the total recovered ¹⁴C activity.

Partitioning of ¹⁴C assimilate between the foliage and fruit was affected by both hormonal treatment and leaf canopy position within the branch (Fig. 6). Levels of ¹⁴C were evenly distributed among leaves in most of the treatments; however, the values obtained for the GA₃ and BA treatments were noticeably higher. NAA treatment was the exception in which an acropetal decline in ¹⁴C actually occurred.

The uppermost portion of the branch accounted for over 96% of the total ${}^{14}C$ recovered in fruit of the control (Fig. 6). This value fell to 70% and 74% in the BA and GA₃ treatments, respectively, as a greater proportion of the total fruit ${}^{14}C$ activity was found in those fruit residing in the lowermost portion of the branch. This was most evident in the GA₃ treatment. Partitioning of ${}^{14}C$ among the fruited nodes of the growth inhibitor treatments was severely restricted by the reduction in average fruit dry weight and sink intensity (Fig. 2, Table 1).

Treatment	No. of flowers	No. of fruit	Percent abscission
Control	22.2 + 2.8	48 + 15	798 + 42
Benzyladenine	22.2 ± 2.3 25.0 ± 2.7	12.0 ± 3.5	52.0 ± 11.6
Paclobus	26.7 ± 5.2	2.3 ± 1.3	89.7 ± 6.8
Napthaleneacetic	37.2 ± 2.6	10.4 ± 3.7	73.2 ± 7.9
Abe-:	35.2 ± 5.2	8.6 ± 1.6	74.9 ± 5.1
acid	30.5 ± 4.9	11.3 ± 2.3	62.7 ± 6.8

 Table 1. Influence of foliar-applied hormonal sprays (100 μ M in 40% methanol with 0.1% Triton X-100) on flower and fruit number and abscission in Valencia orange^a

^a Plants were sprayed $3 \times$ /week for 3 weeks prior to brief exposure of selected branch units to ${}^{4}CO_{2}$ during early fruiting. Data are means \pm SE of 5 replicates.

Fig. 5. Influence of growth regulator spray treatments on distribution of ¹⁴C photosynthate among the foliage, fruit, and stem tissue of 1-year-old Valencia orange trees 24 h after 30-min exposure of selected branches to ¹⁴CO₂. Spray treatments of BA, GA₃, NAA, PP333, and ABA (100 μ M in 40% methanol and 0.1% Triton X-100) were applied 3×/ week for 3 weeks prior to ¹⁴CO₂ pulsing.

Discussion

Benzyladenine (BA) and gibberellic acid (GA₃) enhanced the growth of foliage and fruit in Valencia orange when applied at an early reproductive stage. Higher endogenous cytokinin levels have previously been associated with increased vigor and yield in oranges (Saidha et al. 1983). Branches of BA-treated plants showed an increase in leaf, fruit, and stem dry weight (Figs. 3, 4). There was also a concomitant rise in levels of ¹⁴C photosynthate in these plant parts (Fig. 5). This demonstrates that multiple BA sprays enhance foliar ¹⁴CO₂ uptake and its subsequent export to developing fruitlets (Fig. 6). Previous work (Kriedemann 1968) showed that kinetin applied to citrus fruit enhanced their ¹⁴C-assimilate importing capacity. External application of BA could be mobilizing starch reserves and stimulating sugar movement from the foliage to the fruit in a manner similar to that reported for BA-treated grape vines (Skene

Fig. 6. Effect of growth regulator spray treatments (same as in Fig. 3) on the partitioning of ¹⁴C photosynthate between the foliage and fruit of 2-year-old Valencia orange trees at three canopy levels (upper, middle, lower). Selected branch units from each treatment were harvested 24 h after a 30-min ¹⁴CO₂ pulse that followed 3 weeks of foliar sprays ($3\times$ / week). Each value is the mean \pm SE of five replicates.

1971). Since the individual fruitlets were not isolated from ${}^{14}\text{CO}_2$ exposure, there could have been a partial enhancement of ${}^{14}\text{CO}_2$ directly by the fruit in addition to their acquisition of ${}^{14}\text{C}$ assimilate via foliar export. Tissue from flower buds and small fruitlets of Valencia orange has previously been shown to actively fix ${}^{14}\text{CO}_2$ (Vu et al. 1985).

Treatment with BA markedly reduced fruit abscission over the 3-week period from flowering through fruit set (Table 1). Therefore, BA treatment can augment the total number of fruit retained, which could potentially translate into higher yields. The BA-induced increase in fruit number occurred throughout the branch, especially at nodes in the lower regions of the branch which were usually devoid of fruit in most other treatments, including the control (Fig. 6). Not only were these fruit retained, but they also sequestered a nominal share of foliar-exported ¹⁴C assimilate. Other studies with fruit abscission have stressed the importance of assimilate acquisition by the fruit at an early stage of reproductive development (Brun and Betts 1984, Mauk and Breen 1986, Pate and Farrington 1981).

Foliage of BA-treated branches exhibited the highest levels of ¹⁴C compared to the other treatments at each respective canopy position, especially the lowermost level (Fig. 6). This is particularly important because fruit lower in the canopy must depend heavily on adjacent, older leaves for their primary source of photoassimilate (Koch 1984a, Kriedemann 1970). In contrast, terminally located fruit are not as restricted in their source-sink relations and can import photosynthate from foliage in the mid to the upper region of the branch-Therefore, cytokinin application can affect source-sink activity as shown in other crops (Herzog 1982) to benefit fruit at all canopy levels.

Gibberellic acid responded similarly to BA in its effects on the foliage and fruit. The increase in foliage dry weight was not as pronounced as that in BA treated branches; however, the foliage sink intensity was greater with GA_3 (Fig. 3A). The most dramatic effect of GA_3 on vegetative tissue was the rise in stem dry weight. This stem-thickening phenomenon has been described in earlier research with GA_3 sprays in citrus (Krezdorn and Cohen 1962) and may be related to GA_3 -induced enhancement of sugar movement throughout the vas cular transport system (Skene 1971).

Fruitlet import of ¹⁴C photosynthate was greatest in GA₃-treated branches (Figs. 5, 6), demonstrating the ability of GA_3 to enhance translocation of assimilate to the fruit at an early reproductive stage. The same effect has been reported with GA₃ floral dip treatments (Brown 1974), where increased movement of ¹⁴C assimilate into fruits from this treatment greatly exceeded the control and also GA₃ foliar sprays. This transport enhancement effect by GA₃ was even more pronounced than in the case of BA, where foliage-sink intensity was increased more so than that of the fruit (Figs. 3, 4). The result of GA_3 sprays on ${}^{4}C$ assimilate partitioning by branch position, however, was very similar to that of BA treatment (Fig. 6). The increase in ¹⁴C activity in fruit at the lower branch position may serve to potentially increase yield for the same reasoning as previously discussed for BA. Sprays of GA₃ have been shown to enhance yield in citrus through increased individual fruit size (Krezdorn and Cohen 1962) and/or reduced fruit abscission (Lima and Davies 1984). High levels of endogenous GA₃ have also been found throughout development in fruit retained throughout the season (Goren and Goldschmidt 1970), which could be related to the reported GA_3 inhibition of ethylene production (Cooper and Henry 1973). Gibberellin activity was also much greater in the tracheal sap of alternate-bearing citrus trees in fruiting shoots during the more productive, bearing year (Saidha et al. 1983). Sprays of GA₃ on Valencia orange reduced fruit number (Table 1) through a slight increase in fruitlet abscission. Monselise and Goren (1978) reported that GA₃ reduced flowering and levels of total protein in flower buds. To increase fruit size, GA₃ sprays may be more beneficial later in the season.

The other treatments (NAA, ABA, PP333) generally inhibited fruit but not foliar growth (Table 1, Fig. 3). The increase in flowering associated with these treatments, especially PP333, may be due to their antigibberellin action (Dalziel and Lawrence 1984). The fruit resulting from the increased flower number were quite undersize. The ¹⁴C partitioning profiles showed that NAA, PP333, and ABA greatly reduced the foliar export of ¹⁴C (Figs. 5, 6), which in turn limited fruit growth. This effect could be due to the inhibition of phloem loading and therefore increased assimilate retention in the foliage (During and Alleweldt 1980).

Acknowledgments. This work was supported in part by a research grant from BARD (United States-Israel Agricultural Research and Development Fund, I-83-80).

References

Bausher MG, Yelenosky G (1986) Sensitivity of potted citrus plants to top sprays and root applip. ^{Cation} of paclobutrazol. HortScience 21(1):141-143

- Brown HD (1974) The translocation of metabolites in navel orange. PhD thesis, University of Florida, Gainesville, 64 pp.
- Brun WA, Betts KJ (1984) Source-sink relations of abscising and nonabscising soybean flowers. Plant Physiol 75:187-196
- Cooper WC, Henry WH (1984) Abscisic acid, auxin, and gibberellic acid in wound-ethylene production and abscission of fruit of *Citrus sinensis* (L.) Osbeck on two rootstocks. Proc 8th Int
 Conf Plant Gr Subst Tokyo, Japan, pp 1052-1061
- Dalziel J, Lawrence DK (1984) Biochemical and biological effects of kaurene oxidase inhibitors such as paclobutrazol. Br Plant Growth Regul Group 11:43-57

- During H, Alleweldt G (1980) Effects of plant hormones on phloem transport in grapevines. Ber Dtsch Bot 93:339-347
- Goren R, Goldschmidt EE (1970) Regulative systems in the developing citrus fruit. I. The hormonal balance in orange fruit tissue. Physiol Plant 23:937-974
- Guy CL, Yelenosky G, Sweet HC (1981) Distribution of ¹⁴C-photosynthetic assimilates in "Valencia" orange seedlings at 10° and 25°C, J Am Soc Hort Sci 1067(4):433-437
- Herzog H (1982) Relation of source and sink during grain filling period in wheat and some aspects of its regulation. Physiol Plant 56:155-160
- Koch KE (1984a) The path of photosynthate translocation into citrus fruit. Plant Cell Environ 7:647-653
- Koch KE (1984b) Translocation of photosynthetic products from source leaves to aligned juice segments in citrus fruit. HortScience 19(2):260-261
- Krezdorn AH, Cohen M (1962) The influence of chemical fruit set sprays on yield and quality of citrus. Proc Fla State Hort Soc 75:53-60
- Kriedemann PE (1968) Effect of kinetin on the translocation of ¹⁴C-labelled photosynthate in citrus. Aust J Biol Sci 21:569-571
- Kriedemann PE (1970) The distribution of ¹⁴C-labeled assimilates in mature lemon trees. Aust ¹ Agric Res 21:623-632
- Lima JE, Davies FS (1984) Growth regulators, fruit drop, yield, and quality of navel oranges in Florida. J Am Soc Hort Sci 109(1):81-84
- Mauk CS, Breen PJ (1986) Partitioning of ¹⁴C-photosynthate among competing sinks during flowering and early fruiting in snap bean. J Am Soc Hort Sci 111(3):416-421.
- Monselise SP, Goren R (1978) The role of internal factors and exogenous control in flowering, Peel growth, and abscission in citrus. HortScience 13(2):134-139
- Pate JS, Farrington P (1981) Fruit set in *Lupinus anqustifolius* cv. "Unicrop." II. Assimilate flow during flowering and fruiting. Aust J Plant Physiol 8:293-305
- Saidha T, Goldschmidt EE, Monselise SP (1983) Endogenous growth regulators in tracheal sap of citrus. HortScience 18(2):231-232
- Skene KGM (1971) Hormonal effects on sugar release from vine canes. Ann Bot 35:277-286
- Vu JCV, Yelenosky G, Bausher MG (1985) Photosynthetic activity in the flower buds of "Var lencia" orange (Citrus sinensis (L.) Osbeck). Plant Physiol 78:420-423
- Wang SY, Byun JK, Steffens GL (1985) Controlling plant growth via the gibberellin biosynthesis system. II. Biochemical and physiological alterations in apple seedlings. Physiol Plant 63:169-175